Khovanov homotopy type, periodic links and localizations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Khovanov Homotopy Type, Burnside Category, and Products

In this paper, we give a new construction of a Khovanov homotopy type. We show that this construction gives a space stably homotopy equivalent to the Khovanov homotopy types constructed in [LS14a] and [HKK] and, as a corollary, that those two constructions give equivalent spaces. We show that the construction behaves well with respect to disjoint unions, connected sums and mirrors, verifying se...

متن کامل

On Khovanov Invariant for Alternating Links

We prove the first conjecture of Bar-Natan, Garoufalidis, and Khovanov on the Khovanov invariant for alternating knots.

متن کامل

Bar-natan’s Khovanov Homology for Coloured Links

Using Bar-Natan’s Khovanov homology we define a homology theory for links whose components are labelled by irreducible representations of Uq(sl2). We then compute this explicitly.

متن کامل

The Khovanov Complex for Virtual Links

In the last few years, knot theory has enjoyed a rapidly developing generalisation, the Virtual knot theory, proposed by Louis Kauffman in 1996, see [Kau2]. A virtual link is a combinatorial generalisation of the notion of classical links: we consider planar diagrams with a new crossing type allowed; this new crossing (called virtual and marked by a circle) is neither an overcrossing nor an und...

متن کامل

THE HOMOTOPY GROUPS OF tmf AND OF ITS LOCALIZATIONS

(1) π∗(S) −→ π∗(tmf ) −→ MF∗ that we now describe. Both maps are surprisingly close to being isomorphisms (even though π∗(S) and MF∗ have nothing to do with each other). The first map (1) is the Hurewitz homomorphism: being a ring spectrum, tmf admits a unit map from the sphere spectrum S. This induces a map in homotopy π∗(S) → π∗(tmf ), which is an isomorphism on π0. The only torsion in π∗(tmf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2021

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-021-02157-y